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Alfvén Eigenmodes (AEs) and other magnetohydrodynamic (MHD) phenomena have been stud-
ied at the Joint European Torus (JET) using a new 8-channel, 4 s, 1 MHz, 12-bit data acquisition
system “KC1F” in conjunction with the JET fast Mirnov magnetic fluctuation pickup coils. The
JET magnetic pickup coils were calibrated for the first time in the range 30-460 kHz using a new
remote calibration technique which accounts for the presence of the first few LRC circuit resonances.
A data-processing system has been developed within the MATLAB software environment to pro-
duce spectrograms of fluctuation amplitude and toroidal mode number versus frequency and time.
The analysis software has been automated to allow routine overnight production of spectrogram web
pages. Modes with amplitudes δB/B ≥ 10−8 and toroidal mode numbers |n| < 32 are now routinely
detected. A pulse-characterization database has also been developed to select for the analysis of
various useful subsets of the 4000+ JET discharges for which KC1F data is now available. Based
on the work presented here and recent advances in data-acquisition technology, it should now be
possible to obtain complete diagnostic data on the AEs.

I. INTRODUCTION

This paper provides a comprehensive discussion regarding a set of diagnostic and data analysis tools developed
to study the Alfvén Eigenmodes (AEs) and other high-frequency (up to 500 kHz) magnetohydrodynamic (MHD)
instabilities at the Joint European Torus (JET). The AEs and related modes are of interest for fusion research because
they may be resonant with the energetic ions produced by fusion reactions or auxiliary heating, and sufficiently strong
pressure gradients in the resonant ions may drive the modes unstable to the point where the fast ions are ejected
from the plasma. AE studies at JET are of particular interest due to the substantial alpha particle populations
which can be produced in JET D-T plasmas with up to 16 MW of fusion power and near-breakeven conditions
Q ≡ Pfus/Pheat ≈ 2/3.1,2 Readers interested in AE physics and relevant fluctuation diagnostic techniques are referred
to a recent review article3 and references therein. A physics-focused version of this paper, which leaves out many of
the technical details, is also being published in the refereed literature.4 A more comprehensive discussion of the KC1F
system in the context of Alfvén Eigenmode research at JET, including the KC1F software manuals and operational
procedures, is included in the author’s doctoral thesis.5 Several results obtained with the KC1F diagnostic at JET
have appeared in the literature.1,2,5–17

In this paper, Section II begins with theoretical considerations which set the context for the system design, and
then presents the system specifications in the context of other JET diagnostic and data acquisition systems. Section
III details the calibration of the KC1F system, which is subdivided into an amplifier/digitizer section and a probe-
and-cable section. The calibration of the probe-and-cable section required the development of a new procedure and
was the first remote, absolute calibration of the JET fast magnetic probes in the frequency range of interest for AE
studies (30-460 kHz). Both the theory and application of the procedure are presented. Supplementary technical

∗Present Address: Lawrence Livermore National Lab; P.O. Box 808; Livermore, CA 94551.
†Present Address: CERN; CH-1211, Geneva 23; Switzerland.

1



details of the calibration are presented in Appendix A, including results from benchmarking the procedure using a
test circuit. With the calibration in hand, Section IV details the data processing system, including the hardware
pipeline, the software developed to apply the calibration to the data via digital filtering, and the software developed
to analyze the calibrated data. Selected experimental results5 obtained using these tools are included as examples.
Section V describes the pulse-characterization database developed to assist in mining the large KC1F database and
allow systematic analyses of AE phenomena in various JET plasma configurations.

II. SYSTEM DESIGN AND SPECIFICATIONS

A. Theoretical Considerations

The primary use of the KC1F system is to study the magnetic fluctuations induced by Alfvén Eigenmodes and
other MHD activity in the same frequency range. Since a review article on AE physics has recently been published,3
here we simply highlight selected aspects of AE physics relevant to AE measurement and analysis, using the JET
parameters to set the context for the KC1F system.

The standard dispersion relation for the Alfvén wave spectrum for infinite homogeneous plasmas is obtained from
the ideal MHD equations18,19 or from the general cold-plasma dispersion relation:20

ω2 = k2
‖v

2
A, (1)

vA = B/
√

4π
∑
ions

mini, (2)

for ω � Ωi, in CGS units, with B as the magnetic field, mi as the mass of each type of ion, and ni for the density of
each ion species. In this geometry the Alfvén spectrum is a simple continuum, but as one moves to more tokamak-like
parameters the spectrum becomes more complex.

For an inhomogeneous periodic cylinder with an axial current, the axial and poloidal periodicity can be Fourier-
analyzed, and the spectrum for each flux surface breaks into a set of discrete modes. Because of the radial profiles
of density and field, for each mode k‖ → k‖(r) and vA → vA(r). The variation of the plasma parameters allows a
smooth and continuous variation of the shear Alfvén frequency ω, and for any given frequency one can typically find
at least one shear Alfvén wave somewhere in the plasma with that frequency. Because of this property the shear
Alfvén spectrum is still known as the Alfvén continuum (in frequency).

However, if the functions k‖(r) and vA(r) satisfy

k′/k = −v′A/vA (3)

(with k′ denoting the radial derivative of k, and likewise for vA) then a plot of the function ω(k‖) vs. r will have a
minimum, and below this minimum frequency there is a “gap”, a frequency range where no shear Alfvén waves exist.
But within the gap the MHD equations admit new eigenmode solutions, the Global Alfvén Eigenmodes (GAEs).21,22
Depending on the plasma profiles the Alfvén gap may extend across the entire plasma, and aside from the GAEs
there may be no Alfvén waves in that frequency range.

In tokamak plasmas, additional geometric effects such as toroidal field curvature and elliptical and triangular poloidal
cross-sections also alter the mode spectrum, coupling nearby poloidal harmonics together and introducing additional
Alfvén gaps in the continuous Alfvén frequency spectrum. Within these gaps, new classes of Alfvén Eigenmodes
(AEs) can be found. All the Alfvén Eigenmodes differ from the shear Alfvén waves in having a global rather than
local structure.

1. TAEs

In present-day tokamak experiments the TAE is the canonical, most commonly studied AE. The principal Alfvén
gap in a tokamak arises because of the finite radius of the torus. Inside this gap the TAE, or toroidicity-induced
Alfvén Eigenmode,23,24 exists as a solution to the wave equation. The central frequency of the TAE gap (in cgs units)
sits at

fTAE = vA/2qR ∼ B0/q

√∑
ions

mini. (4)
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Experimentally the TAE frequency is measured from outside the plasma and therefore includes a Doppler shift induced
by the rotation of the plasma:

fmeas = fTAE + nfrot (5)

where n = toroidal mode number and frot is the toroidal rotation frequency. In principle there can also be a Doppler
shift from poloidal rotation, but empirically (in JET at least) this appears so far to be negligible.

The actual frequency of a TAE will be somewhere within the gap, whose width is on the order of the inverse aspect
ratio at the radial location of the gap, ∆f/f ≈ ε � 1. Thus the gap frequency is usually a reasonable estimate of
the correct TAE frequency, and both the TAE frequency and the gap frequency scale similarly with magnetic field
and ion density. In calculating fTAE , the parameters ni, q, and frot should be evaluated at the location of the mode,
typically at r/a ≈ 0.3 where the fast ion pressure gradient is normally steepest. We have found that for standard
JET plasmas with conventional current profiles, a good quick estimate for TAEs with 0 < n < 12 can be obtained
using q = 1.3 to 1.5 and the line-averaged electron density ne.5,8

2. Other types of AEs: EAEs, BAEs, kTAEs, etc.

Other plasma shaping effects also cause the Alfvén spectrum to develop gaps containing eigenmodes. In particular,
tokamaks such as JET with poloidal divertors have both ellipticity and triangularity in the poloidal cross-section.
There are Ellipticity-induced Alfvén Eigenmodes (EAEs) in a gap at

fEAE ≈ 2fTAE, (6)

and Triangularity-induced (non-circular) modes (NAEs) at

fNAE ≈ 3fTAE . (7)

Additional modes have also been predicted to exist below the TAE frequency, resulting from coupling between shear
Alfvén waves and lower-frequency modes such as acoustic waves.

3. AE Mode Structure

The precise theoretical determination of the frequency and structure of particular modes requires sophisticated
computer codes such as NOVA-K, CASTOR, MISHKA, or PENN.25,11,26 These take as inputs the magnetic field
equilibrium (B, q) and density profiles, and then use either MHD, hybrid MHD-kinetic or gyrokinetic models to
determine the mode frequency and structure. The radial, toroidal and poloidal structure are all important. Typically
a given AE has a single toroidal mode number, n, but consists of multiple poloidal harmonics. Multiple AEs can
exist at the same time, with the same n but different structure and slightly different frequency. The radial structure
can be localized or extended. In the poloidal plane the structure of different AE modes can have a ballooning (larger
on the outboard side) or anti-ballooning (larger on the inboard side) character. The modeling results are sensitive
to both the model equations and the plasma equilibrium information imported into the model. The models allow a
determination of the mode frequency at the onset of linear instability, but once the modes grow, nonlinear saturation
effects can cause the mode frequency to drift.27

4. AE Drive

As with other plasma waves, the stability of AEs depends on the balance between driving and damping terms.
The AEs are of particular interest because often they are not as heavily damped as the waves in the shear Alfvén
continuum. It has been realized for some time that Alfvén waves might be destabilized by resonant ions in magnetically
confined plasmas.28,29 This is true of the AEs as well, and the possibility of AE excitation by alpha particles30 raises
the worry that fast-ion driven AEs might cause transport and loss of the alphas, possibly impeding reactor ignition31

or inducing wall damage if losses exceed 5% overall.32 This has made AE physics an important topic in fusion research.
AEs can resonate with the characteristic frequencies of both passing and trapped particles. In JET plasmas the

resonance conditions3 can be satisfied by injected neutral beam ions (at relatively low toroidal fields), ICRF-heated
ion tails, and the alpha particles produced by fusion reactions. Provided the mode drive (arising from the radial
pressure gradient of the resonant fast particle population) exceeds the sum of various damping terms,3 the modes
may be driven unstable, and it is these destabilized modes which the KC1F system seeks to diagnose.
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5. Nonlinear AE Saturation and Particle Transport

Since AEs are resonant with energetic ions, sufficiently large AEs can cause transport and possibly losses of the
ions. Loss fractions greater than a few percent become troublesome for ignition and near-ignition reactor designs such
as ITER.33 The importance of the fast-ion loss issue was highlighted at TFTR when localized losses attributed to
TAE-induced ripple trapping of ICRH tail ions caused melting of debris shields on the bottom of the vacuum vessel.3,32
In order to assess fast ion losses arising from the AEs one must understand both the linear (existence and stability)
and nonlinear (saturation and particle transport) physics of AEs. The same knowledge is also a prerequisite for using
the AEs for alpha particle control.34,35 In order to understand their nonlinear dynamics it is therefore desirable to be
able to measure the amplitudes of individual AEs as a function of time, with temporal resolution comparable to the
linear growth time (1/γ) of the modes (with 10−3 < γ/ω < 10−1 being typical).

It is expected on theoretical and experimental grounds that mode amplitudes above a stochastic threshold

(δB/B)thresh ≈ 5 − 50× 10−4 (8)

will enter strongly nonlinear regimes with substantial fast ion transport.31,27,11 Thus one also needs AE diagnostics
to be sensitive to mode amplitudes which are less than or comparable to this level. It should be noted that mode
amplitudes measured at the edge may be up to 3 orders of magnitude weaker than the peak amplitude in the core, as
will be discussed in Section II D.

B. Measurement Objectives and Design Compromises

JET has a number of diagnostic systems which can in principle detect Alfvén Eigenmodes. The modes may be
detected by their perturbations to the plasma magnetic field, density, and electron temperature. Many methods
for measuring these parameters exist,36,37 and several are implemented at JET. However, there are always practical
limitations on what one can measure, and it is worth characterizing the AE data acquisition problem in order to
understand the diagnostic methods used at JET.

To fully characterize the AEs, one would ideally like to determine routinely their time-dependent toroidal, poloidal
and radial structure and amplitude. At JET this is only just now becoming feasible from the data acquisition
perspective. The amount of data, D that is needed can be expressed as

D = tsfsNcNbNp, (9)

where ts is the duration of the sampling window per pulse, fs is the sampling frequency, Nc is the number of channels
needed, Nb is the number of bytes recorded per sample, and Np is the number of pulses to be recorded.

The main heating phase of JET discharges lasts typically 10 seconds, so we take ts = 10 seconds. The AE frequency
range in JET (from Equation 4) extends from 50 kHz for TAEs at BT = 0.8 Tesla to over 1 MHz for NAEs at BT = 3.8
Tesla, so one would like to have fs ≥ 2 MHz to resolve the AEs. To obtain a comprehensive picture of AE behavior
in a tokamak of 3 meter major radius and 1 meter minor radius would require at a bare minimum 10 radial channels,
5 poloidal channels and 5 toroidal channels, for a total of Nc = 20 channels. As only the toroidal structure of the
AEs is reasonably simple, greater numbers of radial and poloidal channels would be very useful. One would also
like good signal-to-noise ratios as well, so Nb = 2 bytes per sample (12 or 16 bits) are necessary. JET produced
roughly Np = 4000 pulses in 1997. The result of all this is a minimum of D = 3.2 × 1012 bytes of information. Even
this minimum exceeds the total JET data acquisition from the first plasma in 1983 through the end of 1997.38 On
a per-pulse basis one would need upwards of 800 MB of data, which is more than double the typical 1997 per-pulse
JET data acquisition.38 This will be possible in timescales on the order of a few years given projected advances in
data storage technology, but for the work described here it was necessary to make compromises. In fact, each of the
relevant diagnostic data acquisition systems at JET can be seen as representing the results of different compromises.

1. AE Synchronous Detection

The synchronous detection system is used in conjunction with the saddle coils, allowing measurements of the am-
plitude and phase response of plasma parameters to saddle coil-driven fluctuations. The fundamental compromise
which this system makes is to minimize the bandwidth that is sampled. This system has 32 channels of data acqui-
sition, synchronized to the frequency of the function generator used in the saddle coil system. The system allows a
comprehensive picture of fluctuations occurring at the single, swept frequency to which it is tuned. The data output is
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sampled at relatively slow rates (1 kHz) for 12 seconds. This allows real-time detection of resonant plasma responses,
including damping measurements for the low-n AEs which the saddle coils can excite. This has had a considerable
impact for AE experimental work and benchmarking of AE theory.39–41,3

2. CATS

A second major data acquisition system relevant to AE studies at JET is the Central Acquisition and Trigger System,
CATS. One of the purposes of CATS is to study fluctuations leading up to disruptions. The main compromise made
by CATS is to reduce the duration of the sampling period. It has a large number of channels with data provided
at moderate sample rates (250 to 500 kHz), but typically for only short intervals totalling 0.2 to 0.5 seconds per
pulse.42 This is partially compensated by partitioning the sample windows to allow short “peeks” at various times
in the discharge. Because of the large number of channels, CATS is able to take detailed snapshots of the plasma at
particular times. It is worth noting that the sampling rates and sample windows have been progressively increasing
with time as the price/performance ratio of the relevant hardware improves, and this system will be of great use to
future AE studies.

3. KC1F

The work reported here focuses on a third major data acquisition system, known as “KC1F” in the JET nomen-
clature. This system represents a balanced compromise, having a moderately limited number of channels (8), a
moderately limited sample window (4 seconds), and a moderate reduction in sample rate (1 MHz), all of which still
allow routine measurements of TAEs and often EAEs and NAEs. 12 bits of data are taken per sample point, but 2
bytes of storage is used. This results in the collection of 64 MB of data per pulse, which was just barely practical at
JET in the 1997-8 timeframe, and apparently represented over 10% of the data collected in 1997.38

C. Diagnostic Signal Selection for KC1F

Although most of the JET diagnostics have bandwidth limitations that prevent useful information from being
obtained in the 100 kHz - 1 MHz frequency range, several diagnostics used in the 1997-1998 campaigns produced
signals that could conceivably be used to detect the AEs and other interesting phenomena. These included the
fast magnetic Mirnov probes, a small subset of the soft x-ray diode arrays, Dα emission, and the x-mode correlation
reflectometer. Although not sufficient for fully characterizing AEs, these were able to yield several novel and interesting
results.5 Although one would ideally like radially-resolved core measurements of the AEs, thus making soft x-rays and
reflectometry preferable, in practice edge measurements with magnetic probes proved to be the simplest and most
sensitive method for detecting the AEs using the KC1F digitizers. More recently the x-mode reflectometer signals
have also shown evidence of AEs, albeit with lower signal-to-noise ratios.5

D. KC1F Fast Magnetics System Specifications

The hardware for the JET fast magnetics system “KC1F” consists of a set of magnetic pickup coils (Mirnov
probes) hooked up to a fast-sampling analog-to-digital converter (ADC) connected to a PC which is linked into
the JET COntrol and Data Acquisition System (CODAS). (Several of the ADC channels are now digitizing X-mode
reflectometer signals, but that is beyond the scope of this paper.) A graphical overview of the entire system is provided
by Fig. 1; here we focus on the first two stages, the probes and data acquisition system.
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FIG. 1. Overview of KC1F data acquisition and processing.

JET has both toroidal and poloidal coil arrays designed to measure fluctuations in the poloidal magnetic field with
good response up to at least 500 kHz. Both arrays may be divided into sets with low and high resolution in position
space. Thus far KC1F has only been connected to probes from the toroidal sets, which sit somewhat above the
midplane on the outboard side of the torus.

The 10-probe low-resolution toroidal array spans the full circumference of the torus with 10 probes, allowing
determination of low-n mode numbers. The high-resolution array is a set of 3 closely-spaced probes, which allows
one to determine the toroidal structure of high-n modes (|n| < 32) as discussed in Section IVC. Poloidal magnetic
fluctuation amplitudes (at the probe) as low as |δBθ| > 3 × 10−8 Tesla can be measured from the calibrated probe
signals, corresponding to normalized amplitudes |δB/B| > 1 × 10−8.

Each of the JET fast magnetics Mirnov probes is essentially a solenoid coil with length 10 cm, diameter 4 cm, and
about 60 turns. For an ideal coil exposed to a time-varying magnetic field dB/dt, the output voltage can be readily
derived from Faraday’s Law, and follows

V = NAdB/dt, (10)

where N is the number of turns, A is the area enclosed by a single turn, and therefore NA is the effective probe
area.36 The JET probes have an effective area NA = 0.064m2. The probes are measured to have a DC resistance of
50Ω at the typical JET vacuum vessel operating temperature of 320◦C. Basic information about each of the toroidal
coils is given in Table I.43

Name Set Tor. Angle. Φ Eff. Area Status 1997-1998

T1 Low-Res 48.0◦ 0.064 m2 Okay
T2 Low-Res 87.15 0.064 Okay
T3 Both 122.0 0.064 Okay
H302 High-Res 137.94 0.064 Okay
H303 High-Res 148.11 0.064 Okay
H304 High-Res 153.74 0.064 Okay
T4 Both 155.38 0.064 Okay
T5 Low-Res 192.83 0.064 Dead
T6 Low-Res 227.9 0.064 Unreliable
T7 Low-Res 267.2 0.064 Okay
T8 Low-Res 302.1 0.064 Okay
T9 Low-Res 335.4 0.064 Okay
T10 Low-Res 12.87 0.064 Dead

TABLE I. Locations of the JET fast magnetics Toroidal Mirnov coils. The zero reference for the toroidal angles is arbitrary
for our purposes.

6



The coil signals are cabled out of the torus using individually screened twisted-pair cable which runs into the
radiation-shielded diagnostic hall.

The KC1F fast acquisition system consists of 8 Waugh differential buffer amplifiers whose outputs go into a “Falcon”
model transient recorder system manufactured by the Sunnyside Corp., which is controlled by a PC system connected
to the JET DATANET diagnostic data network. The Waugh buffer amplifiers shield the transient recorder ADCs
against transient high voltages from the tokamak plasma and other systems. The Falcon transient recorder system
is an 8-channel, 12-bit, transputer-based ADC with 64 MB of onboard RAM. This Sunnyside system may acquire
data at either 1 MHz for 4 seconds, or 2 MHz for 2 seconds, although the latter mode of operation is not robust
(roughly 1 failure per 7 pulses), apparently because of problems with the trigger signal sent from the central JET
control systems. There is nominally only ±1 count of noise in the ADC system proper (i.e. 1 part in 2048), which is
borne out in practice.

It is important to note that because this system relies on magnetic probe measurements at the outboard edge above
the midplane, it may not always be possible to observe strongly core-localized AEs, AEs with a highly anti-ballooning
mode structure, or modes with a strong up/down asymmetry favoring the lower part of the plasma. Furthermore,
the magnetic fluctuation amplitudes measured at the edge may be up to 3 orders of magnitude smaller than the core
amplitudes, according to both theoretical models of the AE mode structure and reports of simultaneous internal and
external measurements in other tokamaks.44,3

III. FAST MAGNETICS CALIBRATION AT JET

A. Statement of the Problem

In order to determine the amplitudes of modes (such as AEs) detected by the magnetic probes, one must absolutely
calibrate the amplitude response vs. frequency of the entire data collection system. To determine toroidal (or poloidal)
mode numbers it is also necessary to cross-calibrate the phase response vs. frequency of a set of probes at different
toroidal (or poloidal) locations. In the JET case the response curves are non-trivial because the probe circuits are
non-ideal: the simple response function in Equation 10 above describes the voltage induced across the probe by a
time-varying magnetic field, but the probe has a finite self-inductance and resistance, and it is connected to long
cables with their own inductance and capacitance. Circuit resonances therefore alter the voltage that reaches the
digitizers compared to that at the probe itself. Additionally, although all of the JET probes are of identical design
and virtually identical construction, there are small but unavoidable differences in their cabling and connections from
the inside of the torus to the diagnostic digitizers in the diagnostic hall. Consequently, the high-frequency response
of these nominally identical probes is not sufficiently identical for our purposes. Furthermore, the amplitude and
phase response characteristics of the different digitizer channels need not be identical, so an end-to-end calibration is
necessary.

The basic problem in the calibration is identifying the frequency-space complex transfer function which converts
the digitized fluctuation signal (in counts) back into the amplitude and phase of a given magnetic field fluctuation
at the probe head (in Tesla per second). Because neither the probes nor the KC1F channels are identical, each
probe-channel combination must be calibrated independently, and recalibrated whenever the signal connections are
changed. Moreover, because the characteristics of the circuit may change over time, the calibration needs to be
repeated periodically, and consequently a standardized procedure is desirable.

In principle the “obvious” way to do the calibration is to place a controllable, oscillating magnetic field source
near the probes, and directly compare the digitized signals with the known input. However, at JET a direct in situ
calibration cannot be performed easily (and certainly not routinely) due to torus access restrictions. This is a problem
which is difficult in most tokamaks and is made worse in JET by the radiological safety requirements arising from
JET’s D-T capability. However, the transfer function for the “Sunnyside” section of the circuit, with the amplifiers
and digitizers, can be measured directly by injecting a known signal. Meanwhile, we have developed another method
for the probe-and-cable section of the circuit that leads into the torus. The calibration for a given probe is then
combined with that for a given Sunnyside channel to yield an overall calibration.

For the probe-and-cable section, instead of a direct calibration, a remote calibration technique has been developed.
This technique builds upon the work of one of the authors (Moret) on the TCV tokamak at CRPP-Lausanne,45 and
makes use of our knowledge of the magnetic probe circuit structure. Basically we measured the circuit impedance
vs. frequency and then used the known circuit structure to determine the transfer function, as explained in Section
III C.

For AC circuits it is convenient to work in the Laplace (s = iω) frequency-domain space. Here the output signal S
(in digitizer counts) of the fast digitizers is related to the rate of change of the magnetic field dB/dt along the probe
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axis via

S = Ha(s)Hp(s)δB, (11)

where Ha is the transfer function of the amplifier-digitizer (Sunnyside) section, Hp is the transfer function of the
probe-cable section (including NAs as the Laplace-space form of Eq. 10), and δB is the magnetic fluctuation being
measured at the probe. The two transfer functions can individually be represented as H(s) = B(s)/A(s) in the
frequency domain, where B is the output and A is the input.

The calibration problem reduces to the problem of determining Ha(s) and Hp(s), but once the calibration transfer
function is determined, there remain the problems of applying the calibration to the data and then carrying out
systematic studies with data from large numbers of pulses. These challenges are addressed in Sections IV and V,
respectively.

B. Calibration of Amplifier-Digitizer Section

The calibration signal used to directly measure the amplifier-digitizer transfer function Ha was injected from a
Rohde & Schwartz function generator set to output sine oscillations. To maximize the signal to noise ratio the
amplitude was set as large as possible without saturating the ADCs. For the buffer-amplifier gain settings used, the
amplitudes ranged from 500 mW to 4 V peak-to-peak for different calibration attempts. The frequency was swept
up-down-up from 20 kHz to 500 kHz in 0.5 seconds (1.0 seconds for the full cycle back to 20 kHz), with the sweep
rate chosen to fit one complete unbroken sweep within the digitization period.

The signal was sent through a 1:1 measurement isolation transformer to prevent the formation of ground loops,
since the signal generator is grounded whereas the amplifier and digitizer are normally isolated. It was then split 8
ways to arrive in each of the buffer amplifier inputs. The resulting digitized signal for one channel is shown in Fig. 2,
from which it is clear that the amplitude response is certainly not constant in frequency. For reference, the amplitude
of the injected signal was measured with an oscilloscope and found to be constant to within 2% over the whole sweep
range. (We also tested the response to a 1 kHz triangle waveform and determined that the system response vs. injected
voltage was linear at fixed frequency.)

FIG. 2. Typical amplifier-digitizer response to constant-amplitude frequency-swept input. The amplitude varies depending
upon the frequency injected at a given time; individual oscillations are not resolved.

The digitized signals were analyzed using software routines written using the technical-computing package
MATLAB,46 including the Signal Processing Toolbox.47 The routines determine the absolute amplitude (counts/volt)
and relative phase (between channels) of the amplifier-digitizer response to the input signal.

First, the data is divided into a series of short (typically 1.024 ms) timeslices, each of which is Fast Fourier
Transformed (FFT’d). The frequency of the injected signal in each timeslice is determined from the maximum power
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in the FFT. The FFT phase at the maximum frequency is recorded. The peak-to-peak signal amplitude in the
timestep window is converted into counts/volt and also recorded.

For each timestep the mean phase response of each of the ADC channels at the frequency injected at that time
is determined, and then for each channel the deviation in phase response of each channel from the mean at that
frequency is calculated. The RMS phase deviation of all channels is < 0.1 rad (0.5◦) at 50 kHz, but increases to about
0.5 rad (2.5◦) at 500 kHz. This would become a significant source of error for determining mode numbers, so for each
channel the phase deviation from the mean is fitted, and this information is later included in the transfer function.
The amplitude (A) response is fairly uniform for all channels, as shown in Fig. 3. The fitted phase-deviation (δφ)
curves vary, however. This is expected from the RMS phase deviation. The curves are shown in Fig. 4.
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FIG. 3. Amplitude Response of Amplifier-Digitizer Section vs. Frequency

These response curves are converted to a complex response A(ω)eiδφ(ω). This is then automatically fit to a Laplace-
space (s = iω) polynomial of the form Ha(s) = B(s)

A(s) , with B(s) consisting of a constant gain and a linear phase-drift
term, and a quadratic denominator A(s) whose role is mainly to capture the amplitude response vs. frequency. The
fit routine used is the sti.m MATLAB function written by one of the authors (Moret).45 The polynomial is then
compared with the original data and assessed for overall fit quality (error in both amplitude and phase). Typically
the maximum error in the amplitude is about 0.5%, with the worst channel being 1.0%. Meanwhile the mean absolute
phase noise for each channel is between 0.004 and 0.009 rad, i.e. 0.2◦ to 0.5◦. The coefficients of the polynomials for
Ha are recorded along with the fit error information.

The calibration process is repeated whenever a gain setting change or other modification is made to the ADCs
connected to the magnetic probes. This proved very useful when we upgraded from 1-second to 4-second data
acquisition: the calibration results gave bizarre differences in the phase response of the various channels, and by
comparing the digitized signals we discovered small, random, discrete shot-to-shot shifts of 1 − 4µs in the relative
timing between channels. It turned out that the hardware change to upgrade the system memory had entailed some
software changes which accidentally de-synchronized the various channels.48 Had this problem not been identified
and the channels not been re-synchronized, the information obtained on the relative phase of signals from different
channels would have led to severe errors in the toroidal mode number determinations over most of the system’s
frequency range!
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C. Calibration Theory for Probe-and-Cable Section

The transfer function Hp for the probe and cable could not be measured directly. Instead a remote technique was
developed that relied upon our ability to measure the complex impedance of the probe-and-cable circuit as a function
of frequency. A model of the probe-and-cable circuit incorporating the known circuit elements then allows the transfer
function to be determined from a parametrized fit to the impedance.

1. Circuit Model

The JET Mirnov probe circuits consist simply of the probe itself plus a long (∼ 100 m) screened twisted-pair
cable that brings the signal from the torus hall, through various connections, into the diagnostic hall. The probe
has a characteristic impedance due to its resistance and inductance (in series), namely Zp(s) ≡ Rp + sLp, where
Rp ≡ Z(s = 0) ≈ 50Ω, and Lp ≈ 50µH .

The simplest circuit model which might be reasonable accounts for the probe’s inductance and resistance, but
neglects the cable except for its capacitance and admittance (resistance), which is in parallel with the probe as shown
in the top of Fig. 5. A model using conventional circuit elements is feasible because the wavelength of a 500-kHz signal
(at the Nyquist frequency for the digitizers) is 600 m, whereas the size of the probe-and-cable system is about 100
m. However, we knew from preliminary impedance measurements that this single-pole model would be inadequate.
The model which we originally sought to use for the JET probes also accounts for the cable’s inductance and (for
completeness) resistance, as shown in the middle of Fig. 5. This proved to be adequate only for low frequencies at
JET. One possible reason is that the probe cables make connections (at the probe, at the limb junction inside the torus
hall, and so on), and the different sections of cable may have slightly different physical characteristics. Consequently
the work done here involves the physics of the generalized k-th order circuit shown in the bottom of Fig. 5. In all cases
the measurement device at the output (in our case, the KC1F digitizer input) is presumed to have a high impedance
(in our case, 10, 000Ω) which can be neglected.
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“Input”
(Vp = N A dB/dt)

Output
(Vout)

k-Pole

Rp Lp

P1C1 P2C2 PkCk

R2 L2 Rk Lk

2-Pole

Rp Lp

P1C1 P2C2

R2 L2

1-Pole

Rp Lp

P1C1

FIG. 5. Schematics of magnetic probe circuit models. The “input” (driving voltage from dB/dt) is on the left, and the
“output” (which goes to the amplifier-digitizer system) is on the right. The “P” terms are for the admittances (parallel
resistances, P = 1/R) of the transmission cable. Top: simple single-pole model (model A) which includes the probe and one
set of elements for the effects of the cable. Middle: second-order model (model B) which has 2 sets of parameters for the cable.
Bottom: generalization of the circuit model to a k-pole system with an arbitrary number of parameters (model K).

2. Impedance of Model Circuit

For the simple 1-pole circuit (Model A), the impedance is easily determined to be

ZA =
1

P1 + iωC1 + 1
Rp+iωLp

, (12)

or, in a form that will be more useful later, using s = iω,

ZA =
Rp + sLp

1 + (P1 + sC1)(Rp + sLp)
=
NA

DA
, (13)

where NA and DA are polynomials in s representing the numerator and denominator of the impedance.
The 2-pole circuit (Model B) just consists of the 1-pole circuit, plus R2 and L2 in series and C2 and P2 in parallel,

so the impedance becomes

ZB =
1

P2 + sC2 + 1
R2+sL2+ZA

, (14)

Substituting ZA and grinding out the algebra is not particularly informative for our purposes. It is clear, though, that
we are dealing with rational functions in s. Also, the order of the numerator and denominator polynomials increases
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with the number of poles in the circuit, and the number of circuit elements is 4 times the order of the circuit. Looking
to the k-th order circuit, it should be clear that as the order of the circuit increases the algebra becomes increasingly
unmanageable (as was verified by doing the 4th-order circuit by hand!).

However, one can derive recursion rules for how Z changes as the order of the circuit is increased. We can start
with the rational function Zk = Nk/Dk, where N and D are the numerator and denominator polynomials. Then in
adding another segment, we simply hitch on Rk+1 and Lk+1 in series and Ck+1 and Pk+1 in parallel. To simplify the
notation henceforth, let’s define

Xk+1 ≡ Pk+1 + sCk+1 (15)
Yk+1 ≡ Rk+1 + sLk+1. (16)

X is now the parallel term and Y the series term. Note that while X and Y are both linear functions in s, Y has units
of Ohms and X has units of 1/Ohms. Then the impedance Z becomes

Zk+1 =
1

Xk+1 + 1
Yk+1+Zk

. (17)

This can be processed and put into rational form again as

Zk+1 =
Nk +DkYk+1

Xk+1(Nk +DkYk+1) +Dk
. (18)

By inspection of equation 18 one can identify the recursion rules

Nk+1 = Nk +DkYk+1 (19)

=
k+1∑
j=1

Dj−1Yj (20)

Dk+1 = Dk +Xk+1Nk+1 (21)

= Dk +Xk+1

k+1∑
j=1

Dj−1Yj (22)

Now things start to get fun. Since the impedance is a rational function, it can be represented by two vectors in the
linear space of polynomial functions (one for the numerator and one for the denominator). Furthermore the process of
adding series terms (Yk) and parallel terms (Xk) to a given circuit (and thus transforming Z = N/D via the recursion
rules) can be represented by linear operators in this space. The elements of each operator are determined by the
circuit elements that are added in each stage.

To distinguish the linear-space representation from the physical circuit description, let us sayNk ≡ Bk andDk ≡ Ak

in the linear space, where Bk =
[
bk+1 + bks+ ...+ b0sk

]
and Ak =

[
ak+1 + aks+ ...+ a0sk

]
(using MATLAB-style

polynomial notation, consistent with the code written to implement this system).
The process of polynomial multiplication is the same as that of convoluting the vectors whose elements are the

polynomial coefficients, so the recursion rules can be rewritten using the convolution matrices. Adding on an inductor-
resistor pair Yj = Rj + Ljs in series changes only the numerator of the impedance, with

Bj+1 = Bj + LjAj, (23)

where the operator Lj is now

Lj =



Rj 0 0 0 · · ·
Lj Rj 0 0 · · ·
0 Lj Rj 0 · · ·
0 0 Lj Rj · · ·
· · · · · · · · · · · · · · ·


 (24)

Adding a parallel component Xj = Pj + Cjs has a satisfyingly symmetric effect,

Aj+1 = Aj + CjBj (25)

where Cj is, as expected,
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Cj =



Pj 0 0 0 · · ·
Cj Pj 0 0 · · ·
0 Cj Pj 0 · · ·
0 0 Cj Pj · · ·
· · · · · · · · · · · · · · ·


 (26)

By starting off with the null circuit B0 = 0 and A0 = 1, and then systematically adding circuit elements by applying
the appropriate transformations Lj and Cj, one can rapidly construct the rational impedance for the whole circuit.
Because the operators are invertible, given a rational function for the impedance, one can extract the parameters of
the circuit elements Lj , Rj , Cj and Pj . This will prove useful later. Our next step is to examine the relationship
between the impedance (which we can measure) and the transfer function (which we want to determine).

3. Relationship Between Impedance and Transfer Function

In principle, if one has a measurement of the circuit impedance as a function of frequency, plus a knowledge of
the circuit structure (though not necessarily the values of the components), one can extract the transfer function
between different parts of the circuit. In this case we are interested in the transfer function Hp = Vout/Vin. The
“hard way” to determine Hp is to use the inverses of the circuit transformations described above to determine all
of the component values from a polynomial fit to the impedance, and then construct the transfer function from the
known circuit structure. This is not a simple problem and is likely to be fraught with numerical error if the impedance
measurement or fit is imperfect, or if certain circuit elements have small impedances.

A much more direct method is available for the class of circuits of interest here, because there is a surprisingly
simple and direct relationship between the rationalized impedance Zk(s) = Nk(s)/Dk(s) and Hk:

Theorem 1 For circuits of the form in Fig. 5 of any order k, Hk = 1/Dk.

In other words, if the impedance Z is represented as a rational function in s, Z = N/D, then the transfer function H
from input to output is always 1/D.

This theorem is fundamental to the calibration technique because it implies that one can simply measure the
impedance, find the lowest-order rational function that fits it, cast it into appropriate form, and then use the denom-
inator as the transfer function, with no additional work. The proof of the theorem is given in Appendix A2.

4. Rational Function Fit to the Impedance

The basic theory for the calibration of the probe-and-cable section is now assembled. We will measure the impedance
as a function of frequency, fit this to a suitable rational function, and then use the denominator for the corresponding
transfer function. Furthermore we can verify the rational fit by taking the fitted impedance and extracting the values
of the parameters of the circuit (within the limits of numerical error) to see if they are reasonable.

In the Appendix, Section A3 provides complete technical information on the benchmarking and validation of
this method and its numerical implementation, using a probe-like test circuit with known structure and component
values. Here we will proceed to apply the calibration method to the JET Mirnov probes themselves. Later sections
will assemble the entire transfer function and describe how it is applied to calibrate the data.

D. Calibration Results for the JET Probes

1. Impedance Measurements

The procedure used to measure the probe circuit impedance vs. frequency is the same as for the Test Circuit and
is described in Section A3. The frequency range tested was generally 20 to 1000 kHz, using 1.02 s linear sweeps
in 1997, and 10.1 s log sweeps in 1998. Although part of the measurement apparatus (S-parameter test set) is
nominally calibrated only for frequencies above 100 kHz, the Test Circuit results give confidence that the impedance
measurements are acceptable down to 50 kHz or so. Reproducibility checks in 1998 found sweep-to-sweep changes
of 1% or less in the impedance amplitude and phase, so while there may be systematic errors there appears to be
little random error in the impedance measurements. Altogether 9 sets of measurements were made from March 1997
through March 1999.
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As a DC (zero-frequency) check, the overall probe circuit resistance was measured with a multimeter. Except for the
probes which were not functioning, the measured resistances ranged from 49.7Ω to 52.1Ω, quite close to the nominal
value of 50Ω. These results were consistent with the extrapolation of the Z measurements from 20 kHz down to 0
kHz.

Fig. 6 shows the standard impedance measurements for the 3-probe high-resolution toroidal array, and Fig. 7 shows
the measurements for 4 of the 10 probes in the main toroidal set. Note the strong similarities within each set and the
marked differences between the two sets.
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FIG. 6. Impedances of high-resolution JET toroidal probe array circuits, 1997/03/10 data. Probes H302, H303, and H304.
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FIG. 7. Impedances of principal JET toroidal probe circuits, 1997/03/10 data. Probes T3, T4, T7, and T9 are shown.

2. Rational Fits to the Impedances

The data was restricted to the range 0-700 kHz and then a series of rational functions of increasing order were fit to
each of the impedance measurements, until a good fit was obtained. For all the probes except T7 the first reasonable
fit was obtained with a seventh-order numerator and sixth-order denominator, corresponding to a probe circuit with
4 series and 3 parallel sections. For T7 a 5/4 fit worked fine. Fig. 8 shows a typical result. The RMS fit errors in
this case were δ|Z|rms = 0.989Ω for the amplitude and δφRMS = 0.8437◦ for the phase. The range for all the probes
discussed here (T3,T4,T7,T9,H302,H303,H304) was 0.674 ≤ δ|Z|rms ≤ 1.288Ω and 0.773◦ ≤ δφRMS ≤ 0.874◦.
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FIG. 8. Sample impedance fit showing results for JET probe H302.

Once the fits were obtained, the transfer function was recorded from the denominator polynomial coefficients, along
with the fit error information.

3. Before-and-After Comparison

A before-and-after comparison was done to verify that the probe characteristics did not drift over the course of
the campaign. No detectable changes were found in any of the probe impedances from March 1997 through January
1998. However, in February 1999 the impedance data for probe T7 showed extensive noise at 50 kHz, so this probe
was disconnected and that channel was connected to T9, which also turns out to have the highest overall sensitivity.
Fig. 9 shows one example.
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FIG. 9. Comparison of probe impedance measurements for H302 from before (1997/03/10) and after (1998/01/18) the DTE1
experimental campaign.

4. Effects of Changing Vacuum Vessel Temperature

JET normally operates at a vacuum vessel (probe) temperature of 320◦C, but a few experiments carried out in late
1997/early 1998 used a reduced temperature of 150◦C. The lower temperature can affect the plasma-wall interactions
and is of interest for future fusion reactors. The reduced wall temperature also affects the probe impedance, as
shown in Fig. 10. This is presumably due to minor changes in the probe resistance with temperature and in the
probe inductance with thermal expansion. The change in the impedance is significant enough to conclude that a
complete recalibration of all the probes is necessary if reliable results (particularly mode numbers) are needed at wall
temperatures other than 320◦C.
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FIG. 10. Comparison of probe impedance measurements for T9 at vacuum vessel temperatures of 320◦C (1998/01/18, series
b) and 150◦C (1998/02/02, series c).

E. Overall Calibrated Transfer Function

The overall transfer function is determined by taking the product of the transfer functions Ha (counts/volt),
Hp (Vout/Vin), and Vin/δB = NAs for the amplifier-digitizer section, probe-and-cable section, and probe head,
respectively. This rational function is then inverted to extract the magnetic fluctuation signal δB(s) in Tesla/count
from the digitized data. The only remaining calibration issue is how to apply the frequency-domain transfer function
to calibrate the time-domain data. Section IV details the solution that was adopted, its implementation in the
data-processing software, and the resulting overall calibration curves.

IV. DATA PROCESSING

Here we first review the data pipeline hardware and performance, then explain how the calibration results from
Section III are applied to the data, and summarize the data processing capabilities that have been implemented. A
graphical overview of the entire system is provided by Fig. 1. Additional reference information on the data-analysis
software is available in Appendix D of the author’s Ph.D. dissertation.5.

A. Data Pipeline

As explained in Section III, the JET fast magnetics system “KC1F” uses a toroidal array of magnetic pickup coils
(Mirnov probes) hooked up to a fast-sampling analog-to-digital converter (ADC) connected to a PC which is linked
into the UNIX-based JET COntrol and Data Acquisition System (CODAS) through the Windows-NT DATANET
network. The PC serves as the local acquisition control system and provides temporary data storage.

The KC1F system is triggered remotely by CODAS at a time specified by the diagnosticians in the JET control
room. After the data collection, the data is piped from the ADCs through the PC and onto the JET DATANET
server. The server supplies a data storage area on hard disk of upwards of 2 GB, allowing data to be accumulated
throughout the day. At the end of the session (or by special request), the data is finally collected by CODAS and
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transferred to the IBM 3090 mainframe system, which has a large data silo for permanent storage. A schematic of
this data pipeline is shown in Fig. 11.

Digitizer
Cubicle

Ethernet

Diagnostic PC's 'Middleware' UNIX

IBM
30390

NT
servers

FIG. 11. Schematic of JET Data Acquisition Pipeline. Adapted from figure JG98828c courtesy JET Graphics Office.

1. Pipeline Performance

The KC1F system acquires a large volume of data by JET standards (over 1/10 of the total data each pulse), and
the data pipeline is complicated. Furthermore JET operates routinely, taking roughly 30 pulses per day, 5-6 days per
week, for several months at a time, resulting in a total of over 4000 pulses/year, and KC1F generally acquires data for
every pulse. The transient recorder takes only 4 seconds to record the data in real time, but the ratio of the pipeline
bandwidth to the data file size is small (much like a small snake trying to swallow a large cow), so the data archiving
takes many minutes. The performance of the data pipeline therefore became an important issue which influenced the
data analysis techniques.

Once acquired at the transient recorder, the 32 million samples of 12-bit ADC data (totalling 64 megabytes) are
transferred onto the hard disk of the controlling PC. This takes about 5 minutes. The PC must unfortunately swap
the byte order of each ADC data point, in order to make it compatible with the integer data format of the archiving
system; this takes another 5 minutes. The reordered data is then transferred as a single 64-MB file over the local
Windows NT network to a server PC, in another 5 minutes or so. At this point the data is ready to be picked up
by the central data acquisition computers, which transfer the data to a Sun UNIX system and then to the data
silo attached to the IBM 3090 mainframe which serves as the central data warehouse at JET. This process takes an
additional 10-15 minutes.

The entire process takes 25-30 minutes, so it can be carried out between JET pulses provided the interval between
shots is long enough. However, this criterion is not routinely met, so the data is usually accumulated on the server PC
during the day, and then archived overnight. A storage area of 2 GB (later 2.6) was obtained to allow 30 pulses (later
40) of 64 MB each to be acquired on a daily basis. The total data collection for the 1997-1998 D-T campaign exceeded
200 GB, representing something like 10% of the data ever archived at JET38. Occasionally the data pipeline will fail,
leaving data stranded on the diagnostic PC, so the system was monitored on a daily to weekly basis to prevent the
local storage from becoming clogged with old data.

2. Data Processing Hardware Systems

Once on the IBM mainframe, the data is available for analysis. Using the mainframe itself for the data processing
would consume too much CPU time and cause problems for the rest of the JET operations, so instead the data is
transferred on a by-request-only basis to one or more analysis computers. These have included UNIX systems and
Macintosh PCs. A set of standardized and automated software tools was written in MATLAB to allow data to be
obtained from the archive and standard analyses to be performed on both UNIX and Mac systems. The physics of
these standard analyses are described below, following a brief description of certain aspects of the computer hardware.
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We first began analyzing the data in the spring of 1997 using a Sparc 2+ UNIX workstation (gen-off-2) with 500
MB of disk space. The disk space proved limited considering the size of the data files, and it was also rather difficult
to generate and print high-quality figures for presentations and publications. so new hardware was sought.

A second copy of MATLAB was installed in the summer of 1997 on a Macintosh PowerBook 5300c with 64 MB
RAM and 1.8 GB of disk space. This was somewhat slower than the Sparc, but was useful for code development,
data storage, and production of figures, and allowed the Sparc to be used solely for computationally intensive analysis
jobs. The MATLAB software and data-importing tools were upgraded to run on both the Mac and UNIX systems.
The disk space was increased by adding a 100 MB removable disk (Zip) drive, and later a 1-GB removable disk (Jaz)
drive. The 1-GB cartridges proved expensive, so the next solution was a CD-ROM recorder which could archive data
and figures to cheap 650-MB compact digital disks.

In early 1998 the Mac system was upgraded to a Macintosh PowerBook G3 (250 MHz CPU) with 160 MB of RAM
and a 4.5 GB hard disk. This improved the data transfer and processing rates considerably over the Sparc, while
supplying additional storage and maintaining compatibility with the external drives used with the previous Macintosh
system. It became possible to carry out full mode-number analyses (see below) for a megasample of data at a time.

Planning began in mid-1998 to migrate back to a purely UNIX-based system which could be handed over to existing
JET staff at the conclusion of the project. The final computer which arrived in April 1999 is a PC in the JAC cluster
running the Linux operating system. The JAC cluster has direct access to the IBM data, which speeds up the analysis
considerably, though the CPU is not particularly faster than the Macintosh PowerBook G3. The new system has
384 MB of RAM and 16 GB of disk space, allowing full spectrogram and mode-number analyses to be carried out
routinely for the first time.

B. Signal Calibration via Digital Filtering

As explained in Section III, the overall transfer function calibration can be obtained as a rational function in
frequency (counts/Tesla). This rational function can then be inverted (Tesla/count) to extract the magnetic fluctu-
ation signal δB(s) in Tesla from the digitized data in counts. The question then arises how one should apply the
frequency-domain transfer function to calibrate the time-domain data.

One possibility would be to construct AC filter circuits to pre-calibrate the data before it is actually digitized. This
approach suffers from two main difficulties. First, the complexity of the transfer functions suggests that a relatively
complex AC circuit would be needed; the implementation of multiple unique AC filters for all the probes of interest to
KC1F could become a time-consuming and expensive proposition. Second, if any of the probe characteristics should
change (different vacuum vessel temperature, degradation of a connection, etc.), then any data collected prior to the
detection of the change would be permanently miscalibrated, and the filter hardware would need to be modified.
Rather than implement the calibration with analog hardware, we chose to use digital signal-processing techniques.

One method of applying the transfer function to the data would be to first FFT some section of the data, and
then apply the frequency-space transfer function to the FFT’d signal. However, one might want to do other things
with the data than FFT it, and with up to 64 MB of data per pulse, the numerical processing in MATLAB (which
would require high-level, custom, interpreted functions) could become very slow, particularly if the FFT windows
were heavily overlapped to improve the effective time resolution of the diagnostic.

Instead, software was written in MATLAB so that for each combination of probe and digitizer channel that was
used, a digital finite-impulse-response filter could be rapidly and semi-automatically constructed to match the response
of the true transfer function over the desired frequency range. Software was then written allowing any data file to
be rapidly calibrated by using the built-in low-level MATLAB digital filter function to simply filter the data. This
approach allows improvements in the transfer function to be applied retroactively to the data. It also makes it possible
to rapidly calibrate both new probes and old probes used in new operating conditions, by simply processing a new
set of impedance measurements using the semi-automatic software routines.

It is possible to directly convert the transfer function to a filter using the bilinear transformation, but the resulting
filter’s response only matches the transfer function for frequencies much less than the Nyquist frequency, and in
this case we are interested in data right up to the Nyquist frequency (500 kHz). Rather than use a transformation,
therefore, we took a brute-force approach and used existing MATLAB filter-fitting routines to design an FIR filter
(typically 40th to 48th order) whose amplitude and phase response matched the inverse transfer function to the desired
level of accuracy.

The frequency range of the filter fitting was restricted to 30-460 kHz to avoid instabilities near 0 Hz and 500 kHz, so
consequently the data outside those ranges is not well calibrated. It turns out that a 40th-order FIR filter can be fitted
to most probe transfer functions with maximum error bars of less than 5% in magnitude and 0.04 radians (2.3 degrees)
in phase. The fit order was chosen so that the phase error in the filter fitting is smaller for most frequencies than
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the error from the rational function fits used to determine the transfer function from the impedance measurements
described in Section III. The characteristic fit quality for the construction of one such filter is shown in Fig. 12, and
the corresponding error information is shown in Fig. 13.
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FIG. 12. Sample Comparison of Fitted and Original Transfer Functions. The data is taken from the fitting for Probe H302
connected to KC1F channel 111, valid from pulse 41559 onwards. Top: Amplitude (arbitrarily renormalized). Middle: Phase
in radians. Bottom: Complex-plane representation.

The overall known error for the entire calibration process (including the transfer function fit errors and the filter
fit error) has also been calculated. For the calibrated region 50-460 kHz the error in the magnitude is typically 3%
or less, with a maximum of 5%. The phase error in the range 50-460 kHz is typically 0.03 rad (1.7 degrees), with a
maximum of 0.05 rad (2.9 degrees).
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FIG. 13. Transfer Function Filter Fit Errors. Same data as preceding Fig. 12. Top: relative amplitude error vs. frequency
in kHz. Bottom: absolute phase error in radians vs. frequency in kHz.

As a cross-check of the filter calibration method, a set of comparisons were done in which the rational transfer
function was applied to the FFT of the raw data, and the results compared with the FFT of the calibration-filtered
data. As expected the two methods were nearly indistinguishable in their results.
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FIG. 14. Amplitude response of digital calibration filters. These are for the parameters valid for pulse #41723. The
three-digit numbers 111, 121, etc. refer to the Sunnyside system input channels; the alphanumeric codes (T1, H302, etc.)
indicate the magnetic probe that was connected.
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The overall frequency-domain behavior of the most commonly used calibration filters is shown in Figures 14 and
15. It is tremendously helpful that the calibration curves for the three high-resolution probes (H302, H303, and H304)
are nearly identical. This was also evident in the impedance measurements and provides great confidence that these
three probes do indeed behave similarly. It is also notable that the calibration indicates that probe T9 has the highest
overall sensitivity; this is indeed borne out in the experimental data.
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FIG. 15. Phase response of digital calibration filters. These are for the parameters valid for pulse #41723. The three-digit
numbers 111, 121, etc. refer to the Sunnyside system input channels; the alphanumeric codes (T1, H302, etc.) indicate the
magnetic probe that was connected.

C. Data Processing and Analysis Software

This section describes the capabilities of the data analysis software developed for the KC1F system as part of this
project. The emphasis is on the scientific decisions and programming principles used in developing the software.
Since this software package is now being used by others at JET, a complete user’s manual detailing all the software
functions was also written by the author.5

For processing the JET data MATLAB was again used.46 Compared to other high-level tools such as IDL, or low-
level languages such as C or FORTRAN, MATLAB had the advantages of being accessible from inside the control
room, making use of prior expertise, running with minimal changes on both PC and UNIX systems, and having a
high-quality set of built-in library routines for the sort of signal processing that was required.47 A variety of analysis
tools were constructed and assembled in a single menu-driven code (“FastMag”), where they share a common set of
software-importing and calibration routines. The code was written in such a way that whenever there is a decision
point there is also a default option corresponding to the most likely choice. This method resulted in reasonable
flexibility and ease-of-use without requiring a graphical interface.

The fundamental task of the data processing software was to provide useful information on the magnetic fluctuations
that were observed. Both the raw digitized signals and filter-calibrated signals could be readily displayed versus time.
This basic technique was useful for checking against saturation of the signals by large modes, and also proved essential
in studying fast nonlinear phenomena.5) However, viewing data in the time-domain alone is not very efficient for
identifying particular types of modes, and the main focus of the data processing software development was in creating
routines to output useful maps of magnetic fluctuation amplitudes and phases versus both time and frequency.

For each pulse and each channel, the calibrated data were time-windowed into groups of 2N samples (typically
N = 12; i.e. 4096 points) and then fast-fourier-transformed to give amplitude and phase information as a function
of frequency for each window. The data for each time-window were then arranged sequentially to form a 3-D picture
of the magnetic fluctuation amplitude as a function of frequency and time. In addition the phase data for the three
probes in the high-resolution toroidal array were used to determine the toroidal mode numbers (n) of those coherent
fluctuations large enough to have meaningful phase data. The scientific details of the principal functions in the
FastMag code are explained below, with sample output.
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1. Spectrograms

The most interesting output from the diagnostic is necessarily three-dimensional in nature (amplitude vs. time and
frequency), and various techniques were tried in the process of learning how to produce scientifically useful output.
Diagnostic development involves both improving the ability to measure quantities of interest and identifying efficient
means of identifying phenomena of interest within the data that is measured. This latter becomes especially important
when large data sets are involved and one’s understanding is time-limited rather than data-limited. It then becomes
important to keep in mind that what one is capable of learning from the data depends heavily upon how one goes
about looking at it.

It appears from a survey of relevant literature that traditionally the output from fluctuation diagnostics has been
displayed as contour plots. These are very efficient at reducing large amounts of data to small numbers of lines
highlighting 3-D structure. However, contours can make it difficult to resolve fine structure or to assess amplitudes of
small regions. 3-D surface plots are a widely used alternative, and these are much better at resolving fine structure,
but they are often difficult to interpret when printed on a 2-D page, and moreover they generally cannot display very
much information without becoming cluttered, since one needs 4 intersecting lines to indicate the location of each
data “point”.

Spectrograms are colormapped images in which every data point is represented by a color indicating its amplitude.
These have better overall resolution than contour plots and allow the display of much more information than surface
plots, while being nearly as good at resolving fine-grained details, especially since they can be easily zoomed. The
use of spectrograms with logarithmic color scales allows modes spanning many orders of magnitude in amplitude to
be displayed and identified within a single figure with high resolution in all three dimensions.
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FIG. 16. Magnetic fluctuations in JET pulse 40332. Plasma parameters: BT = 3.4 Tesla, Ip = 3.8 MA, H-minority
PICRH ∼ 6.5 MW, PNBI ≤ 16 MW. Note the Doppler-shifted TAEs across the top (n = 5 to 12), with line-broadening in the
upper left.

Figs. 16 and 17 illustrate the value of spectrograms in identifying one of the most interesting phenomena discovered
with KC1F, namely the pitchfork-splitting of the TAEs in JET, in which a single mode appears to split into several
submodes at a certain threshold.6 The mysterious line-broadening shown Fig. 16 is revealed in the zoomed Fig. 17 to
be the splitting of individual TAEs into 3, 5, or 7 separate submodes. The submodes are very near the original mode
in frequency space (relative to the resolution of the FFTs), and thus the splitting would not have been as easily seen
in a contour plot. Nor could this amount of data have been readily plotted as a 3-D surface plot.
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FIG. 17. Spectrogram zoom revealing magnetic fluctuation pitchfork splitting in JET Pulse 40332.

There are other alternatives to the FFT-based spectrogram. Wavelet analysis in particular would probably be very
useful, but it is computationally more intensive, and therefore not as suitable as FFTs for routine processing of large
amounts of data. Wavelets represent an area for future work, though, since computing capability will continue to
advance whereas the amount of data needed to characterize an AE will remain constant.

Two different spectrogram routines were written in FastMag. The first provides a quick look at the data, and
formats figures for rapid preparation into presentations and publications. The second one is automated for the mass-
production of spectrograms for multiple probes, allowing rapid mode number analyses (see below). This latter one
also includes a saturation check to be sure that the digitizers did not saturate during the relevant time window, and it
can be run interactively to produce contour plots and surface plots as well as spectrograms, for detailed analyses. Both
routines were written for this project by borrowing existing MATLAB library functions and then making algorithmic
improvements to increase speed and reduce memory consumption.

2. Timeslice Analyses: Mode Amplitude and Sensitivity

In order to allow direct comparisons between the output of various probes, and to determine explicitly the amplitude
of various observed signals, two different “timeslice” routines were produced, which extract the amplitude and phase
vs. frequency at a single time (by slicing through the spectrogram).

The first routine looks at data for just one probe. It reports the measured fluctuations and the transfer function. The
transfer function is equivalent to the fluctuation amplitude (in Tesla) corresponding to a 1-count signal. The typical
digitizer noise is in fact one count, and knowing the transfer function, this routine also produces a semi-empirical
noise-level estimate. The actual digitizer noise is ±1 count, but because the FFT averages over a large number of
points (typically 2048 or 4096), the effective noise is reduced by over an order of magnitude. This technique also
allows an empirical check on the calibration: during dry-run pulses random noise is piped into the digitizers and
the resulting spectrum matches the empirical transfer-function-based noise-estimate curve nicely. Fig. 18 provides a
timeslice from the same discharge as Fig. 17, and shows that in pitchfork splitting the side-modes are symmetrically
offset in frequency from the central mode, but need not be symmetric in amplitude.
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FIG. 18. Timeslice of magnetic fluctuations from 320-370 kHz at 52.45 s in #40332, analyzed with a 4096-point (4.096 ms)
FFT.

The second timeslice routine allows comparison of data from multiple probes. In addition to plotting each probe’s
output individually (using the first routine), it also overlays the responses of multiple probes. This allows another
direct check of the amplitude-response calibration; it is found that different probes, once calibrated, produce response
amplitudes that are identical to within the known calibration error. One can then go further and use this to dis-
criminate between weak signals (appearing on all probes equally) and noise (which is generally different for each
probe).

3. Frequency Identification and Additional Heating

There are two figures commonly desired for interpreting the KC1F spectrograms. The first of these is a frequency-
identification plot indicating the expected frequencies of the Alfvén Eigenmodes and ICRH Beatwaves. The second
is a plot of the auxiliary heating power (NBI and ICRH) applied to the plasma, since these are the sources of fast
ions which drive the AEs. Both types of plots require access to standard data waveforms on the IBM. A collection of
MATLAB, FORTRAN and shell-script routines were developed for this project, based on existing JET libraries, to
download the required types of data and rapidly and routinely produce both types of figures.

4. Mode Number Analysis

The most important advantage of the calibrated data over the uncalibrated data is that it allows one to compare
the phases of various signals on the different probes, and thereby to extract the toroidal mode number. The basic
algorithm used here is to take the phases αj for nearby probes at toroidal angles φj and determine the mode number
n using the phase-slope method:

n ≡ ∆α/∆φ (27)

26



This can be done rapidly with only two probes, but phase data is often noisy (particularly for weak signals), and it
is very useful to use a third probe to validate the quality of the phase slope. Rather than go to the computational
expense of doing a full-blown least-squares fit on just three points of data, a simpler approach is used here. The slope
is determined using the two probes with highest and lowest toroidal position. The intercept is determined by ensuring
that the line passes through the “average” point (whose phase and location are the average for the dataset). The
RMS error is then determined. If the error is larger than a user-controlled threshold (typically 0.2 radians) then the
point is rejected as a bad fit. If the error is sufficiently low then the slope is mapped to the nearest integer, which is
presumed to be the mode number.

Because the mode-number processing cannot rely on built-in MATLAB functions, it is slow compared to the
spectrogram generation. To reduce the amount of number-crunching, the mode-number routine allows the user to
specify a small window in time and frequency for the analysis. Then an amplitude-threshold test is applied to the
data before it is analyzed. Only those data points are considered whose amplitude exceeds some fraction of the
1-count signal amplitude (typically 0.5), indicating that the signal is well above the noise (usually at about 0.1 after
FFT averaging) and likely to have a meaningful phase. For points which meet the test, the phases from each of the
probes are “unwrapped” (removing any jumps greater than π by shifting points by 2π). Mode numbers are then
produced using those points with significant amplitude and low fit errors. The mode numbers are then mapped into
a color scheme and the resulting mode-number spectrogram is displayed. The error estimates for each point are also
displayed. In practice one cannot always determine a mode number from a single point (due to the possible presence
of noise), but in the spectrogram all the points corresponding to a given mode generally show up with nearly identical
mode numbers, and one can be confident that the mode number is correct. Returning to the example of the TAEs
in Figs. 16 and 17, the mode-number analysis determined that in the pitchfork-splitting phenomenon each of the
“new” modes has the same toroidal mode number as the original, central mode. This led to the hypothesis that the
formation of the sideband modes might be due to amplitude modulation of the TAE. This hypothesis was confirmed
by bandpass-filtering the calibrated time-domain data to extract the signal from a particular mode, and then plotting
the resulting time trace, as shown in Fig. 19.5
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FIG. 19. Time trace of calibrated, digitally-filtered data for the 365 kHz n = 7 TAE shown in Figure 17, highlighting the
amplitude modulation of the signal. The filtering used a 7th-order Butterworth 355-375 kHz bandpass filter with 1 dB ripple
and > 40 dB attenuation below 350 kHz and above 380 kHz.

The range of mode numbers which can be determined is restricted by the limitation that the phase jump ∆α
between probes separated by a toroidal angle ∆φ cannot be greater than π. The phase jump ∆α is equivalent to n∆φ
by equation 27, so the limit is then |n∆φ| ≤ π, or

|n| ≤ π/|∆φ|. (28)

For the 3 probes in the JET high-resolution toroidal set (H302, H303, H304), the largest gap is 10.17 degrees (by
Table I), so we can determine −17 ≤ n ≤ 17 with confidence. When higher mode numbers are needed one can use
just two probes (H303 and H304), which are separated by only 5.63 degrees, and determine −32 < n < 32.

Equation 27 also allows an estimate of the error in the mode-number calculation. The toroidal positions of the coils
are well known, but the phase measurements are subject to both signal noise and calibration errors. As mentioned in
Section III E, the overall known phase error from the calibration process is roughly 1.7 degrees, with the maximum
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at certain frequencies being as large as 2.9 degrees.
For the standard 3-probe mode-number analysis the phase-slope calculation is done using probes H302 and H304,

with a toroidal separation of 15.80 degrees. For strong signals, if we assume that the phase error is dominated by
the known calibration errors then we can estimate the mode number error to be roughly ∆n ≤ 5.8/15.80 = 0.37, and
the integer mode numbers that are calculated should be correct. For weaker signals, however, the phase error can
increase, and if the mode number error exceeds 0.5 then the mode-number determination algorithm, which uses the
nearest-integer approach, may end up off by one. These conclusions were borne out in practice, where we were able
to measure mode numbers n = 1, 2, 3, 4 of MHD activity at Doppler-shifted frequencies corresponding to nfrot, the
correct multiples of the toroidal plasma rotation frequency.

For the 2-probe high-n mode number analysis the mode number error becomes ∆n ≤ 5.8/5.63 = 1.03, and the
mode number determination is no longer exact to better than ±1 or 2. However, this method is only necessary when
one needs to look at |n| > 17, and one rarely needs an exact mode number in that case; the error amounts to only
10% or so.

5. Automated Processing

To further speed up the data analysis, automated batch processing routines have also been constructed, which allow
the spectrogram and mode number routines to be run automatically for several probes and several pulses at once.
The diagnostician can then spend his time thinking about the physics rather than repetitively giving instructions to
the program.

The automated batch processing routines were subsequently used to produce an automatic overnight processing
routine. This routine starts automatically at a specified time and carries out standard amplitude and mode-number
analyses for all data in a given pulse range (which can include the most recent pulses). The resulting figures are
written to JPEG images and HTML pages for viewing with World-Wide-Web browsers.

V. KC1F PULSE-CHARACTERIZATION DATABASE

In order to make systematic analyses of AE phenomena in a wide variety of JET plasma configurations, a pulse-
characterization database toolkit was developed. This section describes the database and provides an overview of
the first JET campaign in which data was collected using KC1F. Although the discussion here is brief, it cannot
be overstated how valuable the database was in allowing efficient analysis of the KC1F dataset. In addition to
the discussion here, the technical details of the database system are provided in Appendix B of the the author’s
dissertation.5 Some examples of the results obtained by using this database to mine the KC1F data are included in
the literature;1,2,5–17 the most detailed results to date are included only in the thesis5 but should be published shortly
in the refereed literature.

Roughly 200 gigabytes of KC1F data was collected from 4280 pulses during the pre-D-T, D-T, and ITER Physics
campaigns during 1997 and 1998, when JET used the Mark IIA Divertor. This span covers Pulse #40135 of Jan. 22,
1997, to Pulse #44414 of Feb. 2, 1998. JET performed a wide range of experiments including operation with H, D,
T and 3He gases, operation in L mode and ELM-free and ELMy H-modes, and operation with both normal profiles
and Optimised Shear. ICRH heating up to 12 MW was used, as was NBI heating up to 23 MW.

KC1F data was analyzed on a daily basis as it was acquired, and a number of interesting phenomena were revealed
in that way. It was also desired to assess systematically the KC1F diagnostic observations in the various JET plasma
configurations, in particular the Alfvén Eigenmode activity under various ICRH and NBI heating schemes. This
top-down approach was useful partly because the bottom-up approach involving careful analysis of “interesting”
discharges cannot yield definitive conclusions about the universal presence or absence of unstable modes in all pulses
of a particular type.

Furthermore, to carry out studies of AEs and other high-frequency MHD phenomena, it is not enough to conquer
the problem of adequate diagnostic coverage as stated in Section II B. There is also the challenge of making intelligible
the hundreds of megabytes of data obtained with these diagnostics. For instance, the KC1F diagnostic acquires 64
MB of data per pulse. However, the amount of information which can be displayed at one time on a computer monitor
(say 1000 by 1000 pixels) is at most 1-2 MB. Even at 300 dots per inch, which is difficult to resolve with the naked
eye, a single letter-size page holds less than 8 MB of data. Efficient analysis of a full set of high-frequency MHD
data is therefore limited by the difficulty in visually analyzing all of the data, and in this time-limited (as opposed to
data-limited) regime, one would like to have a means of rapidly selecting the most interesting data for a particular
analysis.

28



To this end, a custom database program was written with MATLAB and used as described below. In particular we
sought to develop a means of extracting pulses of particular interest without excessively compromising the scope of
the analysis of those pulses. This approach allows easy reinvestigation of old, partially-understood data, which often
yields up new insights only after later analysis based on subsequent advances in understanding.

The database was implemented by developing a general set of Matlab database routines and then developing an
automated interface to reduce the relevant JET data to elements in the new database files. The database contains 39
elements for each pulse, including data on Bt and Ip; H, D and T concentrations; PNBI , PICRH , and fICRH . Details
are shown in Table II. The key element in the database is the KC1F trigger start time and corresponding acquisition
window. For each pulse, all other time-dependent data are restricted to the KC1F acquisition time window. The data
are further reduced to single points by taking time averages, maxima, or minima over the acquisition window.

Not all 4280 pulses resulted in plasmas; some are dry runs, early disruptions, soft stops, and so on. In addition,
the KC1F system was down for a small fraction of these pulses, resulting in no acquisition. Also, on a few occasions
the trigger time was set improperly and nothing of interest was collected. Despite this, the database still contains
thousands of pulses with good data. A summary of the parameter ranges in the KC1F pulse database is given in
Table III.

The ICRH heating is of particular interest for analying ICRH-driven AEs. The database indicates that about 1400
pulses used ICRH, with power levels 0 < PICRH ≤ 12MW . Of these, about 650 have ICRH only (PNBI = 0), roughly
160 have ICRH with weak NBI (PNBI < 4 MW, often diagnostic blips), and approximately 615 are ICRH + NBI
“combined heating” pulses. Statistics on the ICRH usage vs. frequency in the period covered by the database are
shown in Fig. 20.

Element Units Type Node1 Node2 Reduction

Trigger Start s JPF DA/C1-TC91 TIM direct
Trigger End s n/a n/a n/a manual
Bt(0) T PPF EFIT BVAC max, min
Bt(0) (alt) T PPF MAGN BVAC max, min
Ip A JPF DA/C1-IPLA DAT max, min
H conc. n/a PPF KS3B HTHD mean
T conc. n/a PPF KS3B TTTD mean
PNBI total W PPF NBI PTOT max, min
PNBI 140 keV W PPF NBI P140 max, min
PNBI 80 keV W PPF NBI P080 max, min
PICRH total W PPF ICRH PTOT max, min
PICRH mod. A W PPF ICRH PRFA max
PICRH mod. B W PPF ICRH PRFB max
PICRH mod. C W PPF ICRH PRFC max
PICRH mod. D W PPF ICRH PRFD max
fICRH A12 Hz PPF RFA FR12 mean
fICRH A34 Hz PPF RFA FR34 mean
fICRH B12 Hz PPF RFB FR12 mean
fICRH B34 Hz PPF RFB FR34 mean
fICRH C12 Hz PPF RFC FR12 mean
fICRH C34 Hz PPF RFC FR34 mean
fICRH D12 Hz PPF RFD FR12 mean
fICRH D34 Hz PPF RFD FR34 mean
Updated date n/a n/a n/a manual

TABLE II. Principal parameters included in the KC1F pulse-characterization database. The ICRH data include power
information for each antenna module (A,B,C,D) and frequency information for each antenna strap-pair (e.g. A12, A34).
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The database parameters can easily be used to determine a number of important pulse characteristics. Pulses with
early trigger times (40-45 sec) are generally optimised shear discharges; the rest are plasmas with standard q-profiles.
One can also use the RF frequency and magnetic field information to determine the ICRH resonances in the plasma,
using Eq. 29.

q

m res
= (constant)

fICRH

BT (0)
(29)

This gives the ratio of charge (q) to mass (m) for the resonant species assuming on-axis ICRH. (The constant factor
is normalized to the q and m of hydrogen, so H has a q/m of 1, 3He is 1/3, D is 1/2, and T is 1/3.) One can also
identify monochromatic vs. polychromatic ICRH by checking the mean frequencies of the different modules and seeing
how different they are, and determine the type of NBI injection.

All of these techniques were used to characterize the AE excitation in the various classes of JET discharges during
this campaign, and to identify interesting phenomena in each class. The results obtained by applying this database to
the KC1F data analysis are beyond the scope of this paper, but can be found in the author’s thesis5 and eventually
in the literature.
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FIG. 20. ICRH Statistics for the KC1F Pulse Database. Only data during the KC1F window are used. Note: Some
pulses actually had polychromatic heating (multiple frequency ranges), but the maximum power which is shown is always from
monochromatic heating.

Parameter Units Minimum Maximum

Trigger Time s 40 71
Bt(0) T 0.8 3.8
Ip MA 0 7.8
H conc. % 0 98%
T conc. % 0 95%
PNBI total MW 0 22.3
PNBI 140 keV MW 0 10.9
PNBI 80 keV MW 0 12.2
PICRH total MW 0 12.0
fICRH MHz 22.9 56.8

TABLE III. Range of values for key parameters in the KC1F pulse-characterization database.
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VI. SUMMARY AND ACKNOWLEDGMENTS

A new 8-channel, 4 s, 1 MHz, 12-bit data acquisition system “KC1F” has been used in conjunction with the JET
fast Mirnov magnetic fluctuation pickup coils at the Joint European Torus to study Alfvén Eigenmodes and other
fast magnetohydrodynamic activity. The magnetic probe coils were calibrated for the first time in the range 30-460
kHz using a new remote calibration technique which accounts for the presence of the first few LRC circuit resonances.
A data-processing system has been developed within the MATLAB software environment to produce spectrograms
of fluctuation amplitude and toroidal mode number versus frequency and time. The analysis software has been
automated to allow routine overnight production of spectrogram web pages. Modes with amplitudes δB/B ≥ 10−8

and toroidal mode numbers |n| < 32 can now be routinely studied. A pulse-characterization database has also been
developed to select for the analysis of various useful subsets of the 4000+ JET discharges for which KC1F data is now
available. Based on the work presented here and anticipated advances in data-acquisition technology, it should soon
be possible to obtain complete diagnostic data on the AEs.
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APPENDIX A: SUPPLEMENTAL CALIBRATION INFORMATION

This appendix contains technical reference information on the KC1F fast magnetics calibration which supplements
and supports the scientific information presented in the main text.

1. Parameter Optimization for Amplifier and Digitizer Calibration

With regard to the amplifier-digitizer calibration (Section III B), one would like to optimize the quality of the
calibration, and so it is worth considering the mathematics of the parameter choices for the frequency sweep rate and
FFT.

For a signal with constant frequency, the frequency, Fourier amplitude, and phase can best be determined with a
large timeslice nFFT . This is because the frequency resolution of the FFT is the sample rate divided by the number
of samples in the slice (∆fFFT = fsample

nF F T
), and the error in the amplitude and phase decreases as more periods of the

wave are included in the slice. However, the duration of the slice must then increase: ∆tslice = nFFT τsample, where
τsample = 1/fsample. This is an illustration of the “Fourier Uncertainty Principle”,

∆fFFT∆tslice = 1, (A1)

which is simply a mathematical property of the discrete Fourier transform. (It is intriguing that if you multiply by
Planck’s constant h and use E = hf you can obtain a form of the Heisenberg Uncertainty Principle ∆E∆t = h.) So
if one wants to know the frequency of a signal precisely, one cannot know exactly when one is measuring it, and vice
versa.

For a signal which is sweeping in frequency over time, however, there is a competing effect. The longer the duration
of the slice, the more the frequency of the injected signal will change. The sweep in the frequency of the injected
signal during an FFT slice, ∆fsweep, is given by

∆fsweep = ∆tslice
fmax − fmin

τsweep
(A2)
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A useful rule of thumb is to keep ∆fsweep ≈ ∆fFFT (or less) so that one can be sure the frequency of the peak
response determined with the FFT is in fact the same frequency that was injected (to within the FFT uncertainty).
This implies that one would like

τsweep ≈ (∆tslice)2(fmax − fmin) (A3)

and consequently, in order to maximize the FFT resolution with large ∆tslice, one would like the longest possible
τsweep. The first KC1F calibration was done when the system was only configured with 16 MB of RAM, sufficient
for only 1 second of data acquisition, so the sweep period was set to 0.5 seconds (to be sure there was a single full
unbroken sweep within the 1-second window). The corresponding optimal FFT window turns out to be tslice = 1.02
ms, so the choice was made to use nFFT = 1024 samples for the FFT.

2. Proof of the Theorem of Section III C 3

This section contains a proof of the H = Den(Z) theorem of Section III C 3. Despite the simplicity of the theorem
and considerable effort, the authors were unable to find a simpler proof than that presented here. To maintain clarity,
the circuit model is redrawn in Fig. 21 (top) using the notation of Eq. 16. The approach is to treat Vout and all the
Xj and Yj as known, and determine the inverse transfer function 1/H = Vin/Vout. What we will find is that indeed
the inverse transfer function is identical to the denominator D of the impedance.

“Input”
(Vin)

Output
(Vout)

k-Pole

Y1

Iy1

Y2

Iy2

Yk

Iyk

X1Ix1 XkIxkIx(k-1)X2Ix2

Y(k-1)

Iy(k-1)

X(k-1)

k-Pole

W1

V1

W3

V3

W(2k-1)

V(2k-1)

W2V2 V2kW3V4

W(2k-3)

V(2k-3)

V(2k-2) W(2k-2) W2k

FIG. 21. Simplified general circuit schematics. Top: Using simplified “X-Y” notation of Eq. 16. Bottom: Using normalized
“W” notation of Eq. A6.

Kirchhoff’s equations expressing conservation of energy and charge can be used to determine the voltage and current
in each segment of the circuit. The voltage-loop equations take the form Vj−Vj+1−Vj+2 = 0 and the current-junction
equations are Ij − Ij+1 − Ij+2 = 0. At the input end, Vin − V1 − V2 = 0, while at the output end things simplify:
V2k−2 − V2k−1 − Vout = 0 and I2k−1 − I2k = 0.

These equations lend themselves to matrix form, but first it is convenient to normalize everything to Vout = I2k/X2k

and work only with the voltages rather than the currents. Also, because the normalization depends on the order of
the circuit, and we will want to compare circuits of different order later, we denote the circuit order with a prepended
superscript-k. Thus:
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kWi =
{
Y i+1

2
Xk, i = odd

Xk/X i
2
, i = even (A4)

kIi =
{
Iy( i+1

2 )/Ixk, i = odd
Ix( i

2 )/Ixk, i = even (A5)

kVi = kIki Wi. (A6)

Note that kW2k = 1, kI2k = 1, and kVout = 1 in this notation. Also, normalizing Vin(= V0) causes it to become
kVin = Vin/Vout = 1/Hk, so we just need to solve for kVin. The schematic for this notation is shown in the bottom
of Fig. 21.

The complete description of the 2k equations for the k-th order circuit is then given by the matrix equation[
kM

] [
kV

]
=

[
kA

]
, (A7)

where kM is 


1 −1 −1 0 0 · · · · · · · · · 0
0 W−1

1 −W−1
2 −W−1

3 0 · · · · · · · · · 0
0 0 1 −1 −1 0 · · · · · · 0
0 0 0 W−1

3 −W−1
4 −W−1

5 · · · · · · 0
... · · · · · · · · · · · · · · · · · · · · ·

...
0 · · · · · · · · · 0 1 −1 −1 0
0 · · · · · · · · · · · · 0 W−1

2k−3 −W−1
2k−2 −W−1

2k−1

0 · · · · · · · · · · · · 0 0 1 −1
0 · · · · · · · · · · · · 0 0 0 W−1

2k−1




(A8)

containing the circuit component values Wj (presumed known), where

kVt =
[

kVin
kV1 · · · kV2k−2

kV2k−1

]
(A9)

is the (transposed) set of unknown voltages, and where

kAt =
[

kA1
kA1 · · · kA2k−1

kA2k

]
=

[
0 · · · 0 1 1

]
(A10)

is the (transposed) vector containing the normalized constants for each of the circuit equations. (Beware that kA2k

corresponds to kV2k−1 in this notation.)
One could read off the value for kV2k−1 directly and then work up the matrix; this would yield kVin in terms of

the other kVi, which in turn are functions of the kWi. However, for our purposes it works better to go the other way,
solving the matrix for kVin from the top down by using Gaussian elimination to systematically cancel the non-kVin
terms in kM.

Since the crux of the proof hinges on the details of the elimination process, it is necessary to detail how it goes.
Starting with the second row i = 2 of kM marching downwards 2k− 1 times, and using the notation kmi,j for the jth
element of the ith row of kM, we do these steps for each row i:

Step 1 Define a rescaling factor:

kCi = −km(i−1),i/
kmi,i (A11)

Step 2 Use kCi to rescale row i, so that the leading nonzero element is the negative of the corresponding element of
row i-1. Since at most 3 elements of row i are nonzero, the effects of this step are:

kmi,i → kCk
i mi,i = −km(i−1),i

kmi,(i+1) → kCk
i mi,(i+1)

kmi,(i+2) → kCk
i mi,(i+2)

kAi → kCk
i Ai

(A12)
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Step 3 Add row i-1 to row i to cancel out that leading nonzero element and propagate the information about Vin to
the next row:

kmi,1 → 1
kmi,i → 0
kmi,i+1 → kmi,i+1 +k mi−1,i+1
kAi → kAi +k Ai−1

(A13)

The final result of this process will be that the bottom row of kM will consist only of a 1 in the first column,
representing the equation

kVin =k A
(final)
2k . (A14)

So to determine kVin we just need to see what the process above does to kA2k.
It should be easy to see that if kA has arbitrary elements, and we define kC1 = 1, then the process above will

rescale each kAi by the corresponding kCi and then add to it the previously-rescaled kAi−1, so that finally

kA
(final)
2k =

2k∑
i=1

(kCk
i A

(initial)
i ). (A15)

Furthermore, the kCi can be determined recursively using the known structure of the initial kM and accounting
for the effects of the algorithm above on the kmi,i+1 terms. Carrying out the steps described above one can readily
see that:

kC1 = 1 (A16)
kC2 = kW1 (A17)
kC3 = kC1 + (kC2/

kW2) (A18)
kC4 = kC2 + (kCk

3W3) (A19)

kCi =
{

kCi−2 + (kCi−1/
kWi−1) i = odd

kCi−2 + (kCk
i−1Wi−1) i = even

}
(A20)

kC2k−1 = kC2k−3 + (kC2k−2/
kW2k−2) (A21)

kC2k = kC2k−2 + (kCk
2k−1W2k−1) (A22)

For even i the relations above imply

kCi =
i/2∑
j=1

(kCk
2j−1W2j−1) = Xk

i/2∑
j=1

(kC2j−1Yj), (A23)

where we have made use of the definition of Wi and the fact that i is even. We’ll find later that the case i = 2k is of
particular interest:

kC2k = Xk

k∑
j=1

(kC2j−1Yj). (A24)

Meanwhile, for i odd, we can also connect back to the X-Y notation,

kC1 = 1 (A25)
kC3 = kC1 + (kC2/

kW2) (A26)
= 1 + (kW1/

kW2) (A27)
= 1 +X1Y1 (A28)

In other words, we have seen that for any k, kC1 = 1 = D0 and kC3 = 1 +X1Y1 = D1. Since this is true for n = 0
and n = 1, let’s take the inductive leap that up to some arbitrary n, kC2n+1 = Dn. Then for the case n + 1, Eqs.
A21 and A23 imply that

34



kC2n+3 = kC2n+1 + (kC2n+2/
kW2n+2) (A29)

= Dn + (Xk

n+1∑
j=1

(kC2j−1Yj))Xn+1/Xk (A30)

= Dn +Xn+1

n+1∑
j=1

(kDj−1Yj) (A31)

= Dn+1, (A32)

where the recursion rules of Eq. 22 were used for the final step. So kC2n+1 = Dn is true for any n and k. Returning
to the even case, Eq. A24 together with the recursion rules of Eq. 22 leads to

kC2k = Xk

k∑
j=1

(Dj−1Yj) = XkNk. (A33)

If we now recall that all the kAi are 0 save kA2k−3 and kA2k−2, which are 1, we can put all the pieces together and
complete the proof of the Theorem:

1/H = Vin/Vout (A34)
= kVin (A35)

= kA
(final)
2k (A36)

=
2k∑
i=1

(kCk
i A

(initial)
i ) (A37)

= kC2k−1 +k C2k (A38)
= Dk−1 +XkNk (A39)
= Dk (A40)

It is worth noting that for “half-order” circuits (containing k parallel components (X1 up to Xk) but k + 1 series
components (Y1 up to Yk+1, the addition of the extra Y component alters the impedance numerator, but not the
denominator. Meanwhile, the transfer function remains unchanged, which is intuitively clear because the extra series
component simply adds to the very high impedance of the device measuring the voltage on the output, and little to
no current flows in the final series leg of the circuit.

It would be an interesting question to see how large is the class of circuits for which the relation H = 1/D holds,
but this result is sufficient for our purposes.

3. Benchmarking the Calibration Method Using a Test Circuit

To test the calibration method and verify the codes used to implement it, a small-scale circuit board was used,
with known component values and circuit layout similar to the JET probes. For several different settings of the
circuit component values, the expected impedance and transfer function vs. frequency were precisely predicted using
the calibration circuit model described above. Then they were measured directly and compared to the predictions.
A rational function was fit to the measured impedance. The circuit parameters were extracted from the fitted
impedance function and compared to the known parameters. Due to the low-impedance measurement device used for
the transfer function measurement, however, it was not possible to directly compare the fitted transfer function with
the measurement. Nonetheless the results provided a useful test of the calibration method and helped to validate and
debug the codes used to implement it.

a. Test Circuit Description and Measurement Procedure

A suitable circuit board, the Test Matching Unit (TMU), had already been prepared by P. Lavanchy for use with
the JET Saddle Coils.

Together with a series resistance Rt3 added to the input, the test circuit could be mapped to a simplified probe
circuit, as shown in Fig. 22, Fig. 23, and Table IV.
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In
(BNC)

Ct1+Ct2

Lt1
’

Out
(BNC)Rt1

(and Rt1
’)

FIG. 22. Simplified schematic of Test Matching Unit emulating a probe.

In
(BNC)

Out
(BNC)

R1

P2

L2L1

C1 P1 C2

R2

FIG. 23. Schematic of probe circuit emulated by the Test Matching Unit.

TMU Notation Probe Notation

Rt3 R1

∅ L1

Ct1 + Ct2 C1

∅ P1

R′
t1 R2

L′
t1 L2

∅ C2

1/Rt1 P2

TABLE IV. Mapping between TMU notation and Probe Circuit Notation.
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To measure the circuit impedance vs. frequency, a Hewlett-Packard 3589A Spectrum/Network Analyzer (calibrated
from 10 Hz to 150 MHz) was used with an S-parameter test set (calibrated from 100 kHz to 150 MHz, but believed
to be reliable down to 20 kHz or so) used in Forward mode. The 50 Ω source and input were used, to match the
nominal impedance of the test circuit (and later the probe cables). The measurements were made using a 1:1 isolation
transformer to prevent the formation of undesirable ground loops. When the real probes were measured a signal
switch box was used to convert the BNC output of the Network Analyzer to the LEMO connectors used at the test
point in the probe circuit. Calibration of the Network Analyzer was done using an open-circuit reflection test; this
factored out the transformer and signal switch box.

For the Test Circuit measurements the frequency range tested was 20 to 1000 kHz, using a free-run trigger and 5-
second linear frequency sweep. The network analyzer was in the swept network mode, measuring normalized reflection
coefficients to determine the impedance. The magnitude and phase of the complex Z were displayed on-screen, saved
to floppy disks, and then transferred to a PC. Once on PC the data were converted to MATLAB format, and then
analyzed using custom MATLAB routines developed for this project.

In addition to measuring the normalized impedance, the S-Parameter Test Set was also used to measure the transfer
function directly, in the form S21 = 2H = 2(Vout/Vin). In this mode the input impedance of the network analyzer
was only 50Ω, rather than the usual high impedances of 1 MΩ for the network analyzer or 10 kΩ of the Sunnyside
system. This requires making a slight modification to the theory which relates Z and H, in which the high impedance
of the measurement device was neglected. If we use the old notation for Nk and Dk (Eq. 16), and write the finite
impedance of the measurement device on the output side as Zmeas, then for the Test Circuit

Ztest =
Ntest

Dtest +Ntest/Zmeas
. (A41)

This allows an easy calculation of Z, but one must also account for the impedance Zin on the input voltage (which
simply adds to R1). Meanwhile, from the perspective of the transfer function, Zmeas acts as another parallel resistance
on the end, changing the last admittance P but not affecting the fact that the transfer function H is just the
denominator of the impedance. So now

Htest =
1

Dtest +Ntest/Zmeas
. (A42)

For the Test Circuit measurements, Rt1 was fixed at 5.03kΩ, and Ct2 was fixed at the small value 0.5nF . The
resistance of the inductors (denoted R′

t1) was measured for each test. The TMU settings used for the other circuit
components in the four test runs are summarized in Table V. The parameter values were chosen to be similar to
the expected values of comparable parameters in the actual probes, although not all the probe parameters could be
represented in the Test Circuit. For Set #1, which had a low impedance, the network analyzer was also recalibrated
using a shorted rather than open circuit, and a second impedance measurement taken for comparison.

Set # Ct1(nF ) L′
t1(µH) R′

t1(Ω) Rt3(Ω)

1 10.0 20.1 1.4 0
2 10.0 20.1 1.4 51
3 104.5 20.1 1.4 51
4 10.0 201 7.3 51

TABLE V. Parameters of the Test Circuit Measurements.
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b. Predicted and Measured Z and H

The predicted and measured impedance, Z, and transfer function, H, for set #1 were in excellent agreement with
each other, except for the phase of Z and the magnitude of Z where |Z| < 0.5. The areas of bad agreement probably
arise because the open-circuit calibration (large Z) breaks down where Z is small; the prediction and measurement
for the same parameters were in much better agreement using a short-circuit (small Z) calibration, but in that case
the agreement breaks down for |Z| > 0.5, where the short-circuit calibration is no longer reasonable. For sets #2 #3
and #4 the agreement between theory and measurement for these (more realistic) configurations was much better.
The results for Set #4 are shown in Figure 24.
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FIG. 24. Predicted and measured impedance (Z) and transfer function (H) for Test Unit, Set #4. Both amplitude and phase

are shown. An open-circuit calibration was used for the impedance measurement. The light dashed lines are the predictions,
and the dark solid lines are the measurements.

On the basis of these results it is clear that the circuit model codes can accurately calculate the impedance, and that
calculating the transfer function from the impedance denominator is also valid. It is worth noting that the predictions
were made before the measurements were done! The main source of error so far appears to be in the impedance
measurements for f < 50 kHz (where the S-parameter Test Set calibration may be bad) and where |Z| < 0.5 (where
the open-circuit network analyzer calibration may break down).

c. Rational Function Impedance Fit

The rational impedance functions corresponding to the Test Circuit configuration have a third-order numerator
(terms up to order s3) and a fourth-order denominator (terms up to order s4). Therefore the natural thing to do is
to fit the measured impedance curves to rational functions of the same order. Because the Test Circuit is missing
several components present in the equivalent Probe Circuit, however, the 3/4 fit has more free parameters than the
circuit does. Furthermore, some of the impedance measurement problems described in the previous section arose at
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low frequencies, and in order to avoid these the fit was restricted to the data from 50 kHz to 1 MHz. However, this
also tends to cut out the region where the variation in Z is greatest, and the variation in the remaining data may
not sufficiently constrain the fit. On the positive side, the fits obtained in this way match the Z data well, with RMS
amplitude errors of only a few Ohms and RMS phase errors of less than 1 degree. In addition, it was found that the
parameters of the dominant circuit components could in fact often be extracted from the fitted polynomials (with
errors of 3-12%), so the method does seem to work reasonably well.

In numerical tests we found for parameters of order unity that the parameter-extraction code, operating on the ra-
tional function for the impedance, extracts precisely the same circuit parameter values as those put into the impedance
routine. However, the actual Test Circuits have a number of small parameters (all except for R, in fact), and numer-
ical problems precluded the extraction of more than a few of the dominant parameters. Still, the extraction of the
dominant parameters from the output end of the circuit serves as a valuable check upon the quality of the impedance
fitting.

In conclusion, although the Test Circuit results did not provide a complete simulation of the calibration procedure
for the actual probes, they validated key aspects of the procedure and enabled the calibration software codes to be
thoroughly debugged.
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